Search and Rescue (SAR) missions in remote environments often employ autonomous multi-robot systems that learn, plan, and execute a combination of local single-robot control actions, group primitives, and global mission-oriented coordination and collaboration. Often, SAR coordination strategies are manually designed by human experts who can remotely control the multi-robot system and enable semi-autonomous operations. However, in remote environments where connectivity is limited and human intervention is often not possible, decentralized collaboration strategies are needed for fully-autonomous operations. Nevertheless, decentralized coordination may be ineffective in adversarial environments due to sensor noise, actuation faults, or manipulation of inter-agent communication data. In this paper, we propose an algorithmic approach based on adversarial multi-agent reinforcement learning (MARL) that allows robots to efficiently coordinate their strategies in the presence of adversarial inter-agent communications. In our setup, the objective of the multi-robot team is to discover targets strategically in an obstacle-strewn geographical area by minimizing the average time needed to find the targets. It is assumed that the robots have no prior knowledge of the target locations, and they can interact with only a subset of neighboring robots at any time. Based on the centralized training with decentralized execution (CTDE) paradigm in MARL, we utilize a hierarchical meta-learning framework to learn dynamic team-coordination modalities and discover emergent team behavior under complex cooperative-competitive scenarios. The effectiveness of our approach is demonstrated on a collection of prototype grid-world environments with different specifications of benign and adversarial agents, target locations, and agent rewards.
translated by 谷歌翻译
This paper presents a novel federated reinforcement learning (Fed-RL) methodology to enhance the cyber resiliency of networked microgrids. We formulate a resilient reinforcement learning (RL) training setup which (a) generates episodic trajectories injecting adversarial actions at primary control reference signals of the grid forming (GFM) inverters and (b) trains the RL agents (or controllers) to alleviate the impact of the injected adversaries. To circumvent data-sharing issues and concerns for proprietary privacy in multi-party-owned networked grids, we bring in the aspects of federated machine learning and propose a novel Fed-RL algorithm to train the RL agents. To this end, the conventional horizontal Fed-RL approaches using decoupled independent environments fail to capture the coupled dynamics in a networked microgrid, which leads us to propose a multi-agent vertically federated variation of actor-critic algorithms, namely federated soft actor-critic (FedSAC) algorithm. We created a customized simulation setup encapsulating microgrid dynamics in the GridLAB-D/HELICS co-simulation platform compatible with the OpenAI Gym interface for training RL agents. Finally, the proposed methodology is validated with numerical examples of modified IEEE 123-bus benchmark test systems consisting of three coupled microgrids.
translated by 谷歌翻译
网络值时间序列是目前的网络数据的常见形式。然而,研究由网络价值随机过程产生的网络序列的总体行为相对较少。现有的大多数研究都集中在简单的设置上,其中网络在整个时间内是独立的(或有条件独立的),并且所有边缘在每个时间步骤均同步更新。在本文中,我们研究了聚集的邻接矩阵的浓度特性以及与懒惰网络值随机过程产生的网络序列相关的相应拉普拉斯矩阵,其中边缘异步不断地更新,并且每个边缘都遵循其懒惰的随机过程,以更新独立于其更新其他边缘。我们证明了这些集中度的有用性,从而证明了标准估计器在社区估计和变更点估计问题中的一致性。我们还进行了一项仿真研究,以证明懒惰参数的影响,该参数控制时间相关的程度,对社区和变化点估计的准确性。
translated by 谷歌翻译
在电压负载下,已被认为是在紧急情况下恢复电力电网电压稳定性的标准方法,但该方案通常越来越大的负载量。加强学习(RL)被采用作为一种有希望的方法来规避问题;但是,RL方法通常不能保证控制系统的安全性。在本文中,我们讨论了一些新的安全R1方法,即限制优化方法和基于障碍功能的方法,可以在紧急事件下安全地恢复电压。该方法是一般的,可以应用于其他安全关键控制问题。进行了39母线IEEE基准测试的数值模拟,以证明所提出的安全RL紧急控制的有效性。
translated by 谷歌翻译
Deep Markov Models(DMM)是Markov模型的可扩展和表达概括的生成模型,用于表示,学习和推理问题。但是,这些模型的基本随机稳定性保证尚未得到彻底调查。在本文中,我们提供了在动态系统的背景下定义的DMM随机稳定性的充分条件,并提出了一种基于深神经网络建模的概率地图收缩的稳定性分析方法。我们在具有高斯分布的DMMS的稳定性和整体动态行为的稳定性和整体动态行为之间建立了与高斯分布的稳定性和总体动态行为之间的连接。基于该理论,我们提出了一些具有保证稳定性的受约束DMM的实用方法。我们通过使用所提出的稳定性约束,通过直观的数值实验凭证证实我们的理论结果。
translated by 谷歌翻译
We consider the problem of constructing minimax rate-optimal estimators for a doubly robust nonparametric functional that has witnessed applications across the causal inference and conditional independence testing literature. Minimax rate-optimal estimators for such functionals are typically constructed through higher-order bias corrections of plug-in and one-step type estimators and, in turn, depend on estimators of nuisance functions. In this paper, we consider a parallel question of interest regarding the optimality and/or sub-optimality of plug-in and one-step bias-corrected estimators for the specific doubly robust functional of interest. Specifically, we verify that by using undersmoothing and sample splitting techniques when constructing nuisance function estimators, one can achieve minimax rates of convergence in all H\"older smoothness classes of the nuisance functions (i.e. the propensity score and outcome regression) provided that the marginal density of the covariates is sufficiently regular. Additionally, by demonstrating suitable lower bounds on these classes of estimators, we demonstrate the necessity to undersmooth the nuisance function estimators to obtain minimax optimal rates of convergence.
translated by 谷歌翻译
Dataset Distillation (DD), a newly emerging field, aims at generating much smaller and high-quality synthetic datasets from large ones. Existing DD methods based on gradient matching achieve leading performance; however, they are extremely computationally intensive as they require continuously optimizing a dataset among thousands of randomly initialized models. In this paper, we assume that training the synthetic data with diverse models leads to better generalization performance. Thus we propose two \textbf{model augmentation} techniques, ~\ie using \textbf{early-stage models} and \textbf{weight perturbation} to learn an informative synthetic set with significantly reduced training cost. Extensive experiments demonstrate that our method achieves up to 20$\times$ speedup and comparable performance on par with state-of-the-art baseline methods.
translated by 谷歌翻译
Recent years have seen rapid progress at the intersection between causality and machine learning. Motivated by scientific applications involving high-dimensional data, in particular in biomedicine, we propose a deep neural architecture for learning causal relationships between variables from a combination of empirical data and prior causal knowledge. We combine convolutional and graph neural networks within a causal risk framework to provide a flexible and scalable approach. Empirical results include linear and nonlinear simulations (where the underlying causal structures are known and can be directly compared against), as well as a real biological example where the models are applied to high-dimensional molecular data and their output compared against entirely unseen validation experiments. These results demonstrate the feasibility of using deep learning approaches to learn causal networks in large-scale problems spanning thousands of variables.
translated by 谷歌翻译
The central question in representation learning is what constitutes a good or meaningful representation. In this work we argue that if we consider data with inherent cluster structures, where clusters can be characterized through different means and covariances, those data structures should be represented in the embedding as well. While Autoencoders (AE) are widely used in practice for unsupervised representation learning, they do not fulfil the above condition on the embedding as they obtain a single representation of the data. To overcome this we propose a meta-algorithm that can be used to extend an arbitrary AE architecture to a tensorized version (TAE) that allows for learning cluster-specific embeddings while simultaneously learning the cluster assignment. For the linear setting we prove that TAE can recover the principle components of the different clusters in contrast to principle component of the entire data recovered by a standard AE. We validated this on planted models and for general, non-linear and convolutional AEs we empirically illustrate that tensorizing the AE is beneficial in clustering and de-noising tasks.
translated by 谷歌翻译
Abusive language is a concerning problem in online social media. Past research on detecting abusive language covers different platforms, languages, demographies, etc. However, models trained using these datasets do not perform well in cross-domain evaluation settings. To overcome this, a common strategy is to use a few samples from the target domain to train models to get better performance in that domain (cross-domain few-shot training). However, this might cause the models to overfit the artefacts of those samples. A compelling solution could be to guide the models toward rationales, i.e., spans of text that justify the text's label. This method has been found to improve model performance in the in-domain setting across various NLP tasks. In this paper, we propose RAFT (Rationale Adaptor for Few-shoT classification) for abusive language detection. We first build a multitask learning setup to jointly learn rationales, targets, and labels, and find a significant improvement of 6% macro F1 on the rationale detection task over training solely rationale classifiers. We introduce two rationale-integrated BERT-based architectures (the RAFT models) and evaluate our systems over five different abusive language datasets, finding that in the few-shot classification setting, RAFT-based models outperform baseline models by about 7% in macro F1 scores and perform competitively to models finetuned on other source domains. Furthermore, RAFT-based models outperform LIME/SHAP-based approaches in terms of plausibility and are close in performance in terms of faithfulness.
translated by 谷歌翻译